

Nick’s Python Toolbox

Nxpy is an etherogeneous collection of libraries, dealing with diverse topics such as wrapping
complex commands with API’s, automation of backup files, support for writing your own file-like
objects and many other things.

	abstract - Additions to the abc standard module

	backup_file - File objects with automated backup

	command - Wrap complex commands in Python objects

	file_object - Stubs for read-only and modifiable file-like objects

	file - File related utilities

	maven - Tools to execute the Maven build tool and manipulate its configuration

	memo - Memoize objects according to a given key

	nonblocking_subprocess - Subprocesses with non-blocking I/O

	past - Python version support enforcement

	path - File system related utilities

	ply - Add-ons for the PLY lexer & parser generator

	sequence - Sequence related utilities

	sort - Sorting functions

	svn - High level API for the Subversion version control tool

	temp_file - Temporary files that support the context protocol

	test - Test support utilities

	xml - XML related utility classes

	core - Common library infrastructure

	Running the tests

	Generating the documentation

	Creating new releases

The libraries are being developed with Python 3.8 so as to be compatible with Python 2.7. Tests are
run and most modules work also with 3.5, 3.6 and 3.7. Some should still work with versions as early
as 3.2 and 2.5. There is no immediate plan to remove Python 2.x support, but in general earlier
releases will only be supported as long as external tools, such as Travis or pip, keep supporting
them.

Originally the libraries resided on SourceForge [http://nxpy.sourceforge.net/] and were distributed as a single package.
Starting from release 1.0.0 each library is being packaged separately even though they are all
hosted within the same project on GitHub [https://github.com/nmusatti/nxpy].

The Nxpy logo was drawn by Claudia Romano.

Indices and tables

	Index

	Module Index

	Search Page

abstract - Additions to the abc standard module

Helpers for the standard abc [https://docs.python.org/3/library/abc.html#module-abc] module.

	
class abstractstatic(function)

	Decorator that combines staticmethod [https://docs.python.org/3/library/functions.html#staticmethod] and abc.abstractmethod [https://docs.python.org/3/library/abc.html#abc.abstractmethod].

Copied from this answer [http://stackoverflow.com/a/4474495/838975] to this StackOverflow
question [http://stackoverflow.com/questions/4474395/staticmethod-and-abc-abstractmethod-will-it-blend].

backup_file - File objects with automated backup

Backup a file or directory to make editing reversible.

Implement the context manager protocol, so as to be suitable to be used with
the with statement. When used in this fashion changes are discarded when an
exception is thrown.

	
class BackupDir(dir_, ext='.BAK', mode=1)

	Move or copy a directory that needs to be recreated or modified.

	
__enter__()

	When the controlling with statement is entered, create the backup directory.

	
__exit__(exc_type, exc_val, exc_tb)

	When the controlling with statement is exited normally discard the backup directory,
otherwise restore it to its original place.

	
__init__(dir_, ext='.BAK', mode=1)

	Prepare to backup the dir_ directory.

The backup will be created in dir_’s parent directory, which must be writable, with
extension ext. If mode is MOVE, the default, the original directory will be moved to
the backup destination; if mode is COPY it will be copied there.

	
commit()

	Discard the backup, i.e. keep the supposedly modified file.

	
rollback()

	Replace the original file with the backup copy.

	
save()

	Create a backup copy of the original directory.

	
class BackupFile(file_, ext='.BAK', dir='.', mode=2)

	Implements a read only file object used to automatically back up a file that has to be
modified.

	
__enter__()

	When the controlling with statement is entered, create the backup file.

	
__exit__(exc_type, exc_val, exc_tb)

	When the controlling with statement is exited normally discard the backup file,
otherwise restore it to its original place.

	
__init__(file_, ext='.BAK', dir='.', mode=2)

	Prepare to backup file_, either a file-like object or a path.

The backup file will be created in directory dir with extension ext. If mode is
COPY the original file will be copied to the backup destination; if mode is MOVE it
will be moved there.

	
close()

	Close the backup file and release the corresponding reference.

The backup file may not be reopened.

	
commit()

	Discard the backup, i.e. keep the supposedly modified file.

	
name

	The name of the file to be backed up.

	
open(mode=4)

	Open the backup file for reading. mode may be either TEXT or BINARY.

	
rollback()

	Replace the original file with the backup copy.

	
save()

	Create a backup copy of the original file.

Throw SaveError if it wasn’t possible.

	
exception MissingBackupError

	raised when a backup file or directory isn’t found.

	
exception NotSavedError

	Raised when commit or rollback is called on an inactive BackUpFile or BackUpDirectory.

	
exception RemovalError

	Raised to signal errors in the removal of backup files or directories.

	
exception SaveError

	Raised when a backup file or directory could not be created.

command - Wrap complex commands in Python objects

Tools to wrap a Python API around interactive and non-interactive programs.

The command.Command and interpreter.Interpreter classes handle batch and
interactive commands respectively. They can be provided with option.Config instances
which describe the options available to the programs being wrapped. The option.Parser
class can then be used to validate option sets and construct the corresponding command lines.
See the svn.svn module for a concrete example.

command - Drive batch commands with function calls

Non interactive command driver.

	
class Command(cmd, debug=False)

	Represents the command to be executed.
Typically you would derive from this class and provide a different method for each alternative
way of invoking the program. If the program you want to execute has many sub-commands you
might provide a different method for each sub-command. You can use the
option.Config class to declare the options supported by your command and then use
the option.Parser class to validate your methods’ arguments and generate the
resulting command line. A debug mode is available in which commands are echoed rather than run.
This can be enabled globally or separately for each invocation.

	
__init__(cmd, debug=False)

	Takes as arguments the command name and a boolean value indicating whether debug mode
should be activated for all executions of this command.

	
run(parser, debug=False)

	Executes the command.
Takes as arguments a command line parser (see the option module) and a boolean
indicating whether debug mode should be used for this execution.

	
exception Error(cmd, returncode, err)

	Raised when command execution fails.

	
__init__(cmd, returncode, err)

	Takes the command line, the error code and the contents of the error stream.

error - The command package exception hierarchy

Exception classes for the nxpy.command package.

	
exception BadLogFormat

	Raised if the requested formatting option is unknown.

	
exception Error

	Package exceptions’ base class.

	
exception ExpectError

	Raised on invalid input from stdout or stderr.

	
exception TimeoutError

	Raised when expect didn’t satisfy a timing constraint.

	
exception TimerError

	Raised on misuse of the Timer class.

interpreter - Wrap interactive programs in Python classes

Interactive program driver.

	
exception BadCommand(cmd, err)

	Raised on a command execution failure

	
__init__(cmd, err)

	Takes the failed command and the contents of the error stream.

	
class BaseInterpreter(popen)

	Controls the execution of an interactive program in a sub-process.
Provides means to send input to the controlled process and to check different conditions on its
output and error streams.

	
__init__(popen)

	Creates an interpreter instance. popen is a Popen-like object which must
support non-blocking I/O.

	
expect(cond=None, timeout=0, retries=0, interval=0.01, quantum=0.01, raise_on_error=True, log=None)

	Express expectations on the outcome of a command.

cond is a two argument callable which will be passed the command’s standard output and
standard error, and which should return True if the expectation is satisfied. For the
other arguments see the documentation for the Timer class.

	
expect_any(**kwargs)

	Expect any output.

	
expect_lines(count=1, **kwargs)

	Expect count lines of output.

	
expect_regexp(regexp, where=0, **kwargs)

	Expect to find a match for the regexp regular expression within the where stream.

	
expect_string(string, where=0, **kwargs)

	Expect a string in the where stream.

	
run(cmd, log=None, **kwargs)

	Executes the command and waits for the expected outcome or an error.

	
send_cmd(cmd, log=None)

	Write cmd to the interpreter’s input, optianally logging it. If log is not None,
override the global setting.

	
setLog(log)

	If log is True, enable logging of command output and error, otherwise disable it.

	
class Interpreter(cmd)

	The actual Interpreter class.

This implementation uses a core.nonblocking_subprocess.NonblockingPopen instance.

	
__init__(cmd)

	Creates an interpreter instance. popen is a Popen-like object which must
support non-blocking I/O.

	
class LineWaiter(count)

	Wait for count lines of output.

	
__call__(...) <==> x(...)

	

	
__init__(count)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
class RegexpWaiter(regexp, where)

	Wait for a match to a given regexp, passed either compiled or as a string.

	
__call__(...) <==> x(...)

	

	
__init__(regexp, where)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
class StringWaiter(string, where)

	Wait for a specific string in the where stream.

	
__call__(...) <==> x(...)

	

	
__init__(string, where)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
class Timer(timeout=0, retries=0, interval=0.1, quantum=0.01)

	A collaborative timer class.
Support a polling mechanism by keeping track of the amount of time to wait before the next
attempt, according to different policies.

	
__init__(timeout=0, retries=0, interval=0.1, quantum=0.01)

	Specify an overall timeout, a number of retries and/or an interval between them.
The next attempt will not take place before a quantum has passed. Timings are expressed
in seconds. If a timeout is specified it will take precedence over the other arguments; in
that case the number of retries will take precedence over the interval. If neither a timeout
nor a number of retries are specified the overall timer will never expire.

	
expired()

	Indicate whether the current timer expired.
Use as polling loop control condition.

	
getInterval()

	Return the next wait interval.
Call after each attempt in order to know how long to wait for.

	
reset()

	Reset the timer.

	
waitError(out, err)

	Wait for any error.

	
waitOutput(out, err)

	Wait for any output.

option - Describe complex command lines

Function argument to command line option conversion.
Provides means to describe commands with complicated syntaxes, which often combine sub-commands,
options and arguments. Typical examples include subversion and ftp.

	
class Config(prefix='--', separator=' ', bool_opts=(), value_opts=(), iterable_opts=(), format_opts={}, mapped_opts={}, opposite_opts={})

	Command option definitions.
Provides a single definition point for all the options supported by a command.

	
__init__(prefix='--', separator=' ', bool_opts=(), value_opts=(), iterable_opts=(), format_opts={}, mapped_opts={}, opposite_opts={})

	Constructor. Its arguments are used to specify all the valid options.
Each option is prefixed by prefix. When an option takes multiple arguments these are
separated by a separator. bool_opts must be specified on the command line when they
are True. value_opts take a single argument; iterable_opts take multiple arguments;
format_opts have their syntax specified by means of a format string;
mapped_opts require some form of translation, usually because they are not valid
Python identifiers; opposite_opts must be specified on the command line when they
are False.

	
exception InvalidOptionError

	Raised when an option is not supported.

	
class Parser(config, command, arguments, options, **defaults)

	Constructs a complex command line from the provided command and its options and
arguments. Uses a Config instance, config, to provide means to check conditions
on the supplied options. Other constraints on how options should be used may be expressed and
verified by means of the check methods.

	
__init__(config, command, arguments, options, **defaults)

	Takes an instance of Config, a command to execute, an iterable of arguments
and a mapping of options and their actual values. The remaining keyword arguments indicate
the options supported by command with their default values.

	
checkExactlyOneOption(*options)

	Checks that one and only one in a set of mutually exclusive options has been specified.

	
checkExclusiveOptions(*options)

	Checks that at most one in a set of mutually exclusive options has been specified.

	
checkMandatoryOptions(*options)

	Checks that all compulsory options have been specified.

	
checkNotBothOptsAndArgs(*options)

	Checks that options incompatible with arguments haven’t been specified if any argument is
present.

	
checkOneBetweenOptsAndArgs(*options)

	Checks that either at least one in a set of options or some arguments have been specified,
but not both.

	
getCommandLine()

	Returns the command line to be executed.

file_object - Stubs for read-only and modifiable file-like objects

Helper classes for the implementation of read-only and writable file objects that forward calls
to an actual file object variable.

	
class ReadOnlyFileObject(file_=None)

	Implement the non modifying portion of the file object protocol by delegating to
another file object.

Subclass and override as needed.

	
__init__(file_=None)

	Set the delegate file object.

	
setFile(file_)

	Set the delegate file object.

	
class WritableFileObject(file_=None)

	Implement the file object protocol by delegating to another file object.

Subclass and override as needed.

	
__init__(file_=None)

	Set the delegate file object.

file - File related utilities

File related utilities.

	
compare(file1, file2, ignore_eof=True, encoding=None)

	Compare two text files for equality.
If ignore_eof is True, end of line characters are not considered.
If not None encoding is used to open the files. On Python 2.x encoding is ignored.

	
open_(*args, **kwargs)

	Open a file removing invalid arguments on Python 2.x.

maven - Tools to execute the Maven build tool and manipulate its configuration

Tools to drive the Maven build tool and to manipulate its configuration files.

artifact - Representation of a Maven artifact

assembly_descriptor - Representation of a Maven Assembly plugin’s descriptor

mvn - Wrapper class for the mvn command line tool

Maven wrapper.

	
class Mvn(debug=None)

	
	
__init__(debug=None)

	Takes as arguments the command name and a boolean value indicating whether debug mode
should be activated for all executions of this command.

	
clean(projects=None, debug=None)

	

	
deploy(projects=None, debug=None)

	

	
package(projects=None, debug=None)

	

pom - Representation of a Maven POM file

memo - Memoize objects according to a given key

Memoize class instances according to a given key.

By default the key only assumes the True value, thus implementing a singleton.

	
class Memo

	Base class for classes that require memoization.

Subclasses should override the _key(*args, **kwargs) method to compute a key on the
constructor’s arguments.

Care should be taken to avoid calling __init__() again for entities already constructed.

	
static __new__(cls, *args, **kwargs)

	Return the instance corresponding to the given key, creating it if it doesn’t exist.

nonblocking_subprocess - Subprocesses with non-blocking I/O

Allow non-blocking interaction with a subprocess.

This module was taken from this recipe [http://code.activestate.com/recipes/440554-module-to-allow-asynchronous-subprocess-use-on-win/]
in the ActiveState Code Recipes website [http://code.activestate.com/recipes/langs/python/], with only minor
modifications. This is the original description:

Title: Module to allow Asynchronous subprocess use on Windows and Posix platforms
Submitter: Josiah Carlson (other recipes)
Last Updated: 2006/12/01
Version no: 1.9
Category: System

On Windows pywin32 [https://pypi.python.org/pypi/pywin32] is required.

	
class NonblockingPopen(cmd, encoding=None, **kwargs)

	An asynchronous variant to subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen], which doesn’t block on incomplete I/O
operations.

Note that the terms input, output and error refer to the controlled program streams,
so we receive from output or error and we send to input.

	
__init__(cmd, encoding=None, **kwargs)

	Execute cmd in a subprocess, using encoding to convert to and from binary data written
or read from/to the subprocess’s input, output and error streams.

Additional keyword arguments are as specified by subprocess.Popen.__init__()
method.

	
get_conn_maxsize(which, maxsize)

	Return which output pipe (either stdout or stderr) and maxsize constrained to the
[1, 1024] interval in a tuple.

	
recv(maxsize=None)

	Receive at most maxsize bytes from the subprocess’s standard output.

	
recv_err(maxsize=None)

	Receive at most maxsize bytes from the subprocess’s standard error.

	
send(input_)

	Send input_ to the subprocess’s standard input.

	
send_recv(input_='', maxsize=None)

	Send input_ to the subprocess’s standard input and then receive at most maxsize bytes
from both its standard output and standard error.

	
recv_some(p, t=0.1, e=1, tr=5, stderr=0)

	Try and receive data from NonblockingPopen object p’s stdout in at most tr tries and
with a timeout of t. If stderr is True receive from the subprocess’s stderr instead.

	
send_all(p, data)

	Send all of data to NonblockingPopen object p’s stdin.

past - Python version support enforcement

Identification and enforcement of supported Python releases.

	
class Version(version)

	Identifies a Python release in a way that is convenient for comparison and printing.

	
at_least()

	Return True if the current Python version is equal or higher than self.

	
at_most()

	Return True if the current Python version is equal or lower than self.

	
enforce_at_least(version)

	Assert that the current Python version is equal or higher than version.

	
enforce_at_most(version)

	Assert that the current Python version is equal or lower than version.

path - File system related utilities

filesystem related utilities.

	
class CurrentDirectory(path)

	A context manager that allows changing the current directory temporarily.

	
__init__(path)

	Set the current directory to path.

	
current

	Return the current directory.

	
blasttree(dir_)

	Remove a directory more stubbornly than shutil.rmtree() [https://docs.python.org/3/library/shutil.html#shutil.rmtree].

Required on filesystems that do not allow removal of non-writable files

ply - Add-ons for the PLY lexer & parser generator

Wrapper classes for the PLY parser generator.

parser - A class wrapper for PLY parsers

scanner - A class wrapper for PLY scanners

sequence - Sequence related utilities

Utility functions that deal with non-string sequences.

	
make_tuple(arg)

	An alternate way of creating tuples from a single argument.

A single string argument is turned into a single element tuple and a dictionary argument is
turned into a tuple of its items. Otherwise it works like the standard tuple constructor.

sort - Sorting functions

Sort functions.

	
topological_sort(pairs)

	Provide a topological ordering of the supplied pair elements.

pairs is a sequence of two element sequences, in which the first element comes before
the second according to the desired ordering criterium.

svn - High level API for the Subversion version control tool

A Python API for the Subversion version control tool.

A lazy, ahem, agile person’s answer to the official svn bindings.

svn - Wrapper for the svn client tool

Subversion client wrapper.

Only supports versions 1.6, 1.7 and 1.8, others might work but have not been
tested.
Requires at least Python 2.6.

	
class Info(out)

	Represents the output of the svn info command in a structured way.

	
__init__(out)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
__str__() <==> str(x)

	

	
class Parser(command, arguments, options, **defaults)

	Allows passing nxpy.svn.url.Url instances as arguments to Svn’s methods.

	
__init__(command, arguments, options, **defaults)

	Takes an instance of Config, a command to execute, an iterable of arguments
and a mapping of options and their actual values. The remaining keyword arguments indicate
the options supported by command with their default values.

	
class Status(line)

	Represents the output of one line of the svn status command in a structured way.

	
__init__(line)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
__str__() <==> str(x)

	

	
class Svn(debug=False)

	The actual wrapper.

	
__init__(debug=False)

	Takes as arguments the command name and a boolean value indicating whether debug mode
should be activated for all executions of this command.

	
cat(*targets, **options)

	

	
checkout(src, dest, debug=False, **options)

	

	
commit(src, debug=False, **options)

	

	
copy(src, dest, debug=False, **options)

	

	
delete(*targets, **options)

	

	
diff(*targets, **options)

	

	
export(src, dest, **options)

	

	
getexternals(d)

	Return d’s svn:externals property as a dictionary of directory - URL pairs.

Note that only a limited subset of the externals syntax is supported: either the pre-svn 1.5
one (directory - URL) or the same with inverted elements.
Throw nxpy.svn.url.BadUrlError if an external URL is malformed.

	
getignore(d)

	

	
import_(src, dest, debug=False, **options)

	

	
info(*targets)

	

	
list(*targets)

	

	
log(src, **options)

	

	
mkdir(*targets, **options)

	

	
move(src, dest, debug=False, **options)

	

	
propget(name, *targets)

	

	
propset(name, *targets, **options)

	

	
setexternals(externals, d, username='', password='', debug=False)

	

	
setignore(ignore, d, username='', password='', debug=False)

	

	
status(*targets, **options)

	

	
update(*targets, **options)

	

	
version()

	

svnadmin - Wrapper for the svnadmin administration tool

Subversion administration tool wrapper.

	
class SvnAdmin(debug=None)

	
	
__init__(debug=None)

	Takes as arguments the command name and a boolean value indicating whether debug mode
should be activated for all executions of this command.

	
create(path, debug=None)

	

url - Models a URL adhering to the trunk/tags/branches convention

Subversion URL manipulation.

	
exception BadUrlError

	Indicates a malformed URL.

	
class Url(path)

	A well-formed Subversion repository URL that follows standard svn conventions.

The URL must end in either ‘trunk’, ‘tags/label’ or ‘branches/label’.

	
__eq__(other)

	x.__eq__(y) <==> x==y

	
__init__(path)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
__ne__(other)

	x.__ne__(y) <==> x!=y

	
__str__() <==> str(x)

	

	
getbranch(branch)

	

	
gettag(tag)

	

	
gettrunk()

	

	
isbranch(branch=None)

	

	
istag(tag=None)

	

	
istrunk()

	

wcopy - Models a working copy

Working copy manipulation.

	
exception ModifiedError

	Raised when attempting to tag or branch a working copy that contains changes.

	
exception NotOnBranchError

	Raised when attempting to delete a working copy that is not on the requested branch.

	
exception NotOnTagError

	Raised when attempting to delete a working copy that is not on the requested tag.

	
class Wcopy(dir_, url=None, username='', password='')

	A working copy obtained by checking out a Url.

	
__init__(dir_, url=None, username='', password='')

	Initialize attributes.

If url is not None, perform a checkout, otherwise check that dir_ points to a valid
working copy.

	
__str__() <==> str(x)

	

	
branch(label)

	

	
commit()

	

	
delete_branch(label)

	

	
delete_path(path, keep_local=False)

	

	
delete_tag(label)

	

	
getexternals()

	

	
getignore()

	

	
setexternals(ext)

	

	
setignore(ign)

	

	
tag(label)

	

	
update(ignore_externals=False)

	

temp_file - Temporary files that support the context protocol

Temporary files and directories.

Requires at least Python 2.6

	
class TempDir(*args, **kwargs)

	A temporary directory that implements the context manager protocol.

The directory is removed when the context is exited from. Uses tempfile.mkdtemp() [https://docs.python.org/3/library/tempfile.html#tempfile.mkdtemp] to
create the actual directory.

	
__init__(*args, **kwargs)

	Create a temporary directory with the given arguments.

	
name

	Return the directory name.

	
class TempFile(*args, **kwargs)

	A temporary file that implements the context manager protocol.

Wrap a tempfile.NamedTemporaryFile() [https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile] generated file-like object, to ensure it is not
deleted on close, but rather when the underlying context is closed.

	
__init__(*args, **kwargs)

	Create a temporary file with the given arguments.

	
name

	Return the actual file name.

test - Test support utilities

Testing related utilities.

env - Access to the testing environment for the svn, maven and msvs packages

Environment configuration for tests that interact with the system.

	
class Data(package)

	
	
__init__(package)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
class Env(package)

	
	
__init__(package)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
class EnvBase(elem)

	
	
__init__(elem)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
exception TestEnvNotSetError

	Raised when the test environment hasn’t been setup, i.e. NXPY_TEST_DIR is not set.

	
get_data(test, package)

	

	
get_env(test, package)

	

log - Log configuration for tests

Logging configuration for tests.

test - Support functions for running tests

Unittest utility functions.

	
skipIfNotAtLeast(version)

	Skip the current test if the current Python release is lower than version.

	
skipIfNotAtMost(version)

	Skip the current test if the current Python release is higher than version.

	
testClasses(*classes)

	Runs all tests defined in the given classes.

	
testModules(*modules)

	Runs all tests defined in the given modules.

xml - XML related utility classes

XML related utility classes.

util - Various utilities

core - Common library infrastructure

error - nxpy’s exception hierarchy

Running the tests

Nxpy tests are based on the standard unittest module. As recent features are used the
unittest2 backport is required with Python 2.6. Tests reside in _test subdirectories of the
library package directory. For each module module tests should be found in a test_module
module.

Tests may be run for all supported Python versions installed on your system and present in your
PATH environment variable with tox and pytest. Dependencies from libraries available
from PyPI are automatically installed by tox. The following additional requirements should also be
fulfilled:

	The nxpy-maven library requires that a recent version of Maven be present in your PATH.

	The nxpy-svn library requires that a recent version of Subversion be present in your PATH.

Generating the documentation

Nxpy’s documentation is written in reStructuredText and rendered with Sphinx.

Creating new releases

Libraries should only be released when needed. Although a combined package is not released, its
configuration should be updated to reflect library changes.

Assuming all changes to code and documentation have been pushed to the upstream repository, the
basic steps for the creation of a new library release are:

	Run tox in the root directory of your development checkout. Ideally you should be developing
against the most recent supported Python release on one of the supported platforms. As long as
Python 2.7 is supported tests should be run against it too.

	Update any release related configuration file, e.g.:

	CHANGES.txt

	README.rst

	setup.py

	Commit to master any remaining change and push upstream. This should trigger Travis tests
against all the supported Python versions.

	Bump the library version number according to semantic versioning: increment the minor version
element if the new release includes API breaking changes, the increment version element otherwise.
Add rc1 to the release number to mark the fact that this is a release candidate.

	Run python setup.py sdist bdist_wheel in the library’s root directory. Check the contents of
the resulting packages in the dist directory.

	Run twine check dist/*. Fix any resulting problem.

	Run twine upload --repository-url https://test.pypi.org/legacy/ dist/* to upload the library
to Test PyPI [https://test.pypi.org/]. You will need a Test PyPI account for that.

	Create a new virtualenv and install the new library in it with
pip install --index-url https://test.pypi.org/simple/ --no-deps --pre <<Library>>.

	Perform a minimal test.

	Remove the build, dist and <<Library>>.egg-info directories.

	Remove the rc1 prefix from the version number in the setup.py file.

	Commit and push all outstanding changes.

	Run python setup.py sdist bdist_wheel again and check the contents of the resulting packages.

	Run twine check dist/*.

	Run twine upload dist/* to upload the library to PyPI [https://pypi.org/]. You will need a PyPI account.

	Create another virtualenv and install the new library in it with pip install <<Library>>.

	Perform a last test.

	Supported Python versions

	2.7

	3.5

	3.6

	3.7

	3.8

	Supported platforms

	Linux

	MacOS

	Windows 7 or later

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nxpy	

 	
 	
 nxpy.command	

 	
 	
 nxpy.command.command	

 	
 	
 nxpy.command.error	

 	
 	
 nxpy.command.interpreter	

 	
 	
 nxpy.command.option	

 	
 	
 nxpy.core	

 	
 	
 nxpy.core.abstract.abstract	

 	
 	
 nxpy.core.backup_file.backup_file	

 	
 	
 nxpy.core.error	

 	
 	
 nxpy.core.file.file	

 	
 	
 nxpy.core.file_object.file_object	

 	
 	
 nxpy.core.memo.memo	

 	
 	
 nxpy.core.nonblocking_subprocess.nonblocking_subprocess	

 	
 	
 nxpy.core.past.past	

 	
 	
 nxpy.core.path.path	

 	
 	
 nxpy.core.sequence.sequence	

 	
 	
 nxpy.core.sort.sort	

 	
 	
 nxpy.core.temp_file.temp_file	

 	
 	
 nxpy.maven	

 	
 	
 nxpy.maven.mvn	

 	
 	
 nxpy.ply	

 	
 	
 nxpy.svn	

 	
 	
 nxpy.svn.svn	

 	
 	
 nxpy.svn.svnadmin	

 	
 	
 nxpy.svn.url	

 	
 	
 nxpy.svn.wcopy	

 	
 	
 nxpy.test	

 	
 	
 nxpy.test.env	

 	
 	
 nxpy.test.log	

 	
 	
 nxpy.test.test	

 	
 	
 nxpy.xml	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (LineWaiter method)

 	(RegexpWaiter method)

 	(StringWaiter method)

 	__enter__() (BackupDir method)

 	(BackupFile method)

 	__eq__() (Url method)

 	__exit__() (BackupDir method)

 	(BackupFile method)

 	__init__() (BackupDir method)

 	(BackupFile method)

 	(BadCommand method)

 	(BaseInterpreter method)

 	(Command method)

 	(Config method)

 	(CurrentDirectory method)

 	(Data method)

 	(Env method)

 	(EnvBase method)

 	(Error method)

 	(Info method)

 	(Interpreter method)

 	(LineWaiter method)

 	(Mvn method)

 	(NonblockingPopen method)

 	(Parser method), [1]

 	(ReadOnlyFileObject method)

 	(RegexpWaiter method)

 	(Status method)

 	(StringWaiter method)

 	(Svn method)

 	(SvnAdmin method)

 	(TempDir method)

 	(TempFile method)

 	(Timer method)

 	(Url method)

 	(Wcopy method)

 	(WritableFileObject method)

 	
 	__ne__() (Url method)

 	__new__() (Memo static method)

 	__str__() (Info method)

 	(Status method)

 	(Url method)

 	(Wcopy method)

A

 	
 	abstractstatic (class in nxpy.core.abstract.abstract)

 	
 	at_least() (Version method)

 	at_most() (Version method)

B

 	
 	BackupDir (class in nxpy.core.backup_file.backup_file)

 	BackupFile (class in nxpy.core.backup_file.backup_file)

 	BadCommand

 	BadLogFormat

 	
 	BadUrlError

 	BaseInterpreter (class in nxpy.command.interpreter)

 	blasttree() (in module nxpy.core.path.path)

 	branch() (Wcopy method)

C

 	
 	cat() (Svn method)

 	checkExactlyOneOption() (Parser method)

 	checkExclusiveOptions() (Parser method)

 	checkMandatoryOptions() (Parser method)

 	checkNotBothOptsAndArgs() (Parser method)

 	checkOneBetweenOptsAndArgs() (Parser method)

 	checkout() (Svn method)

 	clean() (Mvn method)

 	close() (BackupFile method)

 	Command (class in nxpy.command.command)

 	
 	commit() (BackupDir method)

 	(BackupFile method)

 	(Svn method)

 	(Wcopy method)

 	compare() (in module nxpy.core.file.file)

 	Config (class in nxpy.command.option)

 	copy() (Svn method)

 	create() (SvnAdmin method)

 	current (CurrentDirectory attribute)

 	CurrentDirectory (class in nxpy.core.path.path)

D

 	
 	Data (class in nxpy.test.env)

 	delete() (Svn method)

 	delete_branch() (Wcopy method)

 	
 	delete_path() (Wcopy method)

 	delete_tag() (Wcopy method)

 	deploy() (Mvn method)

 	diff() (Svn method)

E

 	
 	enforce_at_least() (in module nxpy.core.past.past)

 	enforce_at_most() (in module nxpy.core.past.past)

 	Env (class in nxpy.test.env)

 	EnvBase (class in nxpy.test.env)

 	Error, [1]

 	expect() (BaseInterpreter method)

 	
 	expect_any() (BaseInterpreter method)

 	expect_lines() (BaseInterpreter method)

 	expect_regexp() (BaseInterpreter method)

 	expect_string() (BaseInterpreter method)

 	ExpectError

 	expired() (Timer method)

 	export() (Svn method)

G

 	
 	get_conn_maxsize() (NonblockingPopen method)

 	get_data() (in module nxpy.test.env)

 	get_env() (in module nxpy.test.env)

 	getbranch() (Url method)

 	getCommandLine() (Parser method)

 	getexternals() (Svn method)

 	(Wcopy method)

 	
 	getignore() (Svn method)

 	(Wcopy method)

 	getInterval() (Timer method)

 	gettag() (Url method)

 	gettrunk() (Url method)

I

 	
 	import_() (Svn method)

 	Info (class in nxpy.svn.svn)

 	info() (Svn method)

 	Interpreter (class in nxpy.command.interpreter)

 	
 	InvalidOptionError

 	isbranch() (Url method)

 	istag() (Url method)

 	istrunk() (Url method)

L

 	
 	LineWaiter (class in nxpy.command.interpreter)

 	
 	list() (Svn method)

 	log() (Svn method)

M

 	
 	make_tuple() (in module nxpy.core.sequence.sequence)

 	Memo (class in nxpy.core.memo.memo)

 	MissingBackupError

 	
 	mkdir() (Svn method)

 	ModifiedError

 	move() (Svn method)

 	Mvn (class in nxpy.maven.mvn)

N

 	
 	name (BackupFile attribute)

 	(TempDir attribute)

 	(TempFile attribute)

 	NonblockingPopen (class in nxpy.core.nonblocking_subprocess.nonblocking_subprocess)

 	NotOnBranchError

 	NotOnTagError

 	NotSavedError

 	nxpy.command (module)

 	nxpy.command.command (module)

 	nxpy.command.error (module)

 	nxpy.command.interpreter (module)

 	nxpy.command.option (module)

 	nxpy.core (module)

 	nxpy.core.abstract.abstract (module)

 	nxpy.core.backup_file.backup_file (module)

 	nxpy.core.error (module)

 	nxpy.core.file.file (module)

 	nxpy.core.file_object.file_object (module)

 	nxpy.core.memo.memo (module)

 	
 	nxpy.core.nonblocking_subprocess.nonblocking_subprocess (module)

 	nxpy.core.past.past (module)

 	nxpy.core.path.path (module)

 	nxpy.core.sequence.sequence (module)

 	nxpy.core.sort.sort (module)

 	nxpy.core.temp_file.temp_file (module)

 	nxpy.maven (module)

 	nxpy.maven.mvn (module)

 	nxpy.ply (module)

 	nxpy.svn (module)

 	nxpy.svn.svn (module)

 	nxpy.svn.svnadmin (module)

 	nxpy.svn.url (module)

 	nxpy.svn.wcopy (module)

 	nxpy.test (module)

 	nxpy.test.env (module)

 	nxpy.test.log (module)

 	nxpy.test.test (module)

 	nxpy.xml (module)

O

 	
 	open() (BackupFile method)

 	
 	open_() (in module nxpy.core.file.file)

P

 	
 	package() (Mvn method)

 	Parser (class in nxpy.command.option)

 	(class in nxpy.svn.svn)

 	
 	propget() (Svn method)

 	propset() (Svn method)

R

 	
 	ReadOnlyFileObject (class in nxpy.core.file_object.file_object)

 	recv() (NonblockingPopen method)

 	recv_err() (NonblockingPopen method)

 	recv_some() (in module nxpy.core.nonblocking_subprocess.nonblocking_subprocess)

 	RegexpWaiter (class in nxpy.command.interpreter)

 	
 	RemovalError

 	reset() (Timer method)

 	rollback() (BackupDir method)

 	(BackupFile method)

 	run() (BaseInterpreter method)

 	(Command method)

S

 	
 	save() (BackupDir method)

 	(BackupFile method)

 	SaveError

 	send() (NonblockingPopen method)

 	send_all() (in module nxpy.core.nonblocking_subprocess.nonblocking_subprocess)

 	send_cmd() (BaseInterpreter method)

 	send_recv() (NonblockingPopen method)

 	setexternals() (Svn method)

 	(Wcopy method)

 	setFile() (ReadOnlyFileObject method)

 	
 	setignore() (Svn method)

 	(Wcopy method)

 	setLog() (BaseInterpreter method)

 	skipIfNotAtLeast() (in module nxpy.test.test)

 	skipIfNotAtMost() (in module nxpy.test.test)

 	Status (class in nxpy.svn.svn)

 	status() (Svn method)

 	StringWaiter (class in nxpy.command.interpreter)

 	Svn (class in nxpy.svn.svn)

 	SvnAdmin (class in nxpy.svn.svnadmin)

T

 	
 	tag() (Wcopy method)

 	TempDir (class in nxpy.core.temp_file.temp_file)

 	TempFile (class in nxpy.core.temp_file.temp_file)

 	testClasses() (in module nxpy.test.test)

 	TestEnvNotSetError

 	
 	testModules() (in module nxpy.test.test)

 	TimeoutError

 	Timer (class in nxpy.command.interpreter)

 	TimerError

 	topological_sort() (in module nxpy.core.sort.sort)

U

 	
 	update() (Svn method)

 	(Wcopy method)

 	
 	Url (class in nxpy.svn.url)

V

 	
 	Version (class in nxpy.core.past.past)

 	
 	version() (Svn method)

W

 	
 	waitError() (in module nxpy.command.interpreter)

 	waitOutput() (in module nxpy.command.interpreter)

 	
 	Wcopy (class in nxpy.svn.wcopy)

 	WritableFileObject (class in nxpy.core.file_object.file_object)

 _static/down.png

_static/nxpy.jpg

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Nick’s Python Toolbox

 		
 abstract - Additions to the abc standard module

 		
 backup_file - File objects with automated backup

 		
 command - Wrap complex commands in Python objects

 		
 command - Drive batch commands with function calls

 		
 error - The command package exception hierarchy

 		
 interpreter - Wrap interactive programs in Python classes

 		
 option - Describe complex command lines

 		
 file_object - Stubs for read-only and modifiable file-like objects

 		
 file - File related utilities

 		
 maven - Tools to execute the Maven build tool and manipulate its configuration

 		
 artifact - Representation of a Maven artifact

 		
 assembly_descriptor - Representation of a Maven Assembly plugin’s descriptor

 		
 mvn - Wrapper class for the mvn command line tool

 		
 pom - Representation of a Maven POM file

 		
 memo - Memoize objects according to a given key

 		
 nonblocking_subprocess - Subprocesses with non-blocking I/O

 		
 past - Python version support enforcement

 		
 path - File system related utilities

 		
 ply - Add-ons for the PLY lexer & parser generator

 		
 parser - A class wrapper for PLY parsers

 		
 scanner - A class wrapper for PLY scanners

 		
 sequence - Sequence related utilities

 		
 sort - Sorting functions

 		
 svn - High level API for the Subversion version control tool

 		
 svn - Wrapper for the svn client tool

 		
 svnadmin - Wrapper for the svnadmin administration tool

 		
 url - Models a URL adhering to the trunk/tags/branches convention

 		
 wcopy - Models a working copy

 		
 temp_file - Temporary files that support the context protocol

 		
 test - Test support utilities

 		
 env - Access to the testing environment for the svn, maven and msvs packages

 		
 log - Log configuration for tests

 		
 test - Support functions for running tests

 		
 xml - XML related utility classes

 		
 util - Various utilities

 		
 core - Common library infrastructure

 		
 error - nxpy’s exception hierarchy

 		
 Running the tests

 		
 Generating the documentation

 		
 Creating new releases

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

