
Nxpy Documentation
Release 1.0.4

Nicola Musatti

Oct 14, 2020

Contents

1 abstract - Additions to the abc standard module 3

2 backup_file - File objects with automated backup 5

3 command - Wrap complex commands in Python objects 7

4 file_object - Stubs for read-only and modifiable file-like objects 11

5 file - File related utilities 13

6 maven - Tools to execute the Maven build tool and manipulate its configuration 15

7 memo - Memoize objects according to a given key 17

8 nonblocking_subprocess - Subprocesses with non-blocking I/O 19

9 past - Python version support enforcement 21

10 path - File system related utilities 23

11 ply - Add-ons for the PLY lexer & parser generator 25

12 sequence - Sequence related utilities 27

13 sort - Sorting functions 29

14 svn - High level API for the Subversion version control tool 31

15 temp_file - Temporary files that support the context protocol 35

16 test - Test support utilities 37

17 xml - XML related utility classes 39

18 core - Common library infrastructure 41

19 Running the tests 43

20 Generating the documentation 45

i

21 Creating new releases 47

22 Indices and tables 49

Python Module Index 51

Index 53

ii

Nxpy Documentation, Release 1.0.4

Nxpy is an etherogeneous collection of libraries, dealing with diverse topics such as wrapping complex commands
with API’s, automation of backup files, support for writing your own file-like objects and many other things.

Contents 1

Nxpy Documentation, Release 1.0.4

2 Contents

CHAPTER 1

abstract - Additions to the abc standard module

Helpers for the standard abc module.

class abstractstatic(function)
Decorator that combines staticmethod and abc.abstractmethod.

Copied from this answer to this StackOverflow question.

3

https://docs.python.org/3/library/abc.html#module-abc
https://docs.python.org/3/library/functions.html#staticmethod
https://docs.python.org/3/library/abc.html#abc.abstractmethod
http://stackoverflow.com/a/4474495/838975
http://stackoverflow.com/questions/4474395/staticmethod-and-abc-abstractmethod-will-it-blend

Nxpy Documentation, Release 1.0.4

4 Chapter 1. abstract - Additions to the abc standard module

CHAPTER 2

backup_file - File objects with automated backup

Backup a file or directory to make editing reversible.

Implement the context manager protocol, so as to be suitable to be used with the with statement. When used in this
fashion changes are discarded when an exception is thrown.

class BackupDir(dir_, ext=’.BAK’, mode=1)
Move or copy a directory that needs to be recreated or modified.

__enter__()
When the controlling with statement is entered, create the backup directory.

__exit__(exc_type, exc_val, exc_tb)
When the controlling with statement is exited normally discard the backup directory, otherwise restore it
to its original place.

__init__(dir_, ext=’.BAK’, mode=1)
Prepare to backup the dir_ directory.

The backup will be created in dir_’s parent directory, which must be writable, with extension ext. If mode
is MOVE, the default, the original directory will be moved to the backup destination; if mode is COPY it
will be copied there.

commit()
Discard the backup, i.e. keep the supposedly modified file.

rollback()
Replace the original file with the backup copy.

save()
Create a backup copy of the original directory.

class BackupFile(file_, ext=’.BAK’, dir=’.’, mode=2)
Implements a read only file object used to automatically back up a file that has to be modified.

__enter__()
When the controlling with statement is entered, create the backup file.

5

Nxpy Documentation, Release 1.0.4

__exit__(exc_type, exc_val, exc_tb)
When the controlling with statement is exited normally discard the backup file, otherwise restore it to its
original place.

__init__(file_, ext=’.BAK’, dir=’.’, mode=2)
Prepare to backup file_, either a file-like object or a path.

The backup file will be created in directory dir with extension ext. If mode is COPY the original file will
be copied to the backup destination; if mode is MOVE it will be moved there.

close()
Close the backup file and release the corresponding reference.

The backup file may not be reopened.

commit()
Discard the backup, i.e. keep the supposedly modified file.

name
The name of the file to be backed up.

open(mode=4)
Open the backup file for reading. mode may be either TEXT or BINARY.

rollback()
Replace the original file with the backup copy.

save()
Create a backup copy of the original file.

Throw SaveError if it wasn’t possible.

exception MissingBackupError
raised when a backup file or directory isn’t found.

exception NotSavedError
Raised when commit or rollback is called on an inactive BackUpFile or BackUpDirectory.

exception RemovalError
Raised to signal errors in the removal of backup files or directories.

exception SaveError
Raised when a backup file or directory could not be created.

6 Chapter 2. backup_file - File objects with automated backup

CHAPTER 3

command - Wrap complex commands in Python objects

Tools to wrap a Python API around interactive and non-interactive programs.

The command.Command and interpreter.Interpreter classes handle batch and interactive commands
respectively. They can be provided with option.Config instances which describe the options available to the
programs being wrapped. The option.Parser class can then be used to validate option sets and construct the
corresponding command lines. See the svn.svn module for a concrete example.

3.1 command - Drive batch commands with function calls

Non interactive command driver.

class Command(cmd, debug=False)
Represents the command to be executed. Typically you would derive from this class and provide a different
method for each alternative way of invoking the program. If the program you want to execute has many sub-
commands you might provide a different method for each sub-command. You can use the option.Config
class to declare the options supported by your command and then use the option.Parser class to vali-
date your methods’ arguments and generate the resulting command line. A debug mode is available in which
commands are echoed rather than run. This can be enabled globally or separately for each invocation.

__init__(cmd, debug=False)
Takes as arguments the command name and a boolean value indicating whether debug mode should be
activated for all executions of this command.

run(parser, debug=False)
Executes the command. Takes as arguments a command line parser (see the option module) and a boolean
indicating whether debug mode should be used for this execution.

exception Error(cmd, returncode, err)
Raised when command execution fails.

__init__(cmd, returncode, err)
Takes the command line, the error code and the contents of the error stream.

7

Nxpy Documentation, Release 1.0.4

3.2 error - The command package exception hierarchy

Exception classes for the nxpy.command package.

exception BadLogFormat
Raised if the requested formatting option is unknown.

exception Error
Package exceptions’ base class.

exception ExpectError
Raised on invalid input from stdout or stderr.

exception TimeoutError
Raised when expect didn’t satisfy a timing constraint.

exception TimerError
Raised on misuse of the Timer class.

3.3 interpreter - Wrap interactive programs in Python classes

Interactive program driver.

exception BadCommand(cmd, err)
Raised on a command execution failure

__init__(cmd, err)
Takes the failed command and the contents of the error stream.

class BaseInterpreter(popen)
Controls the execution of an interactive program in a sub-process. Provides means to send input to the controlled
process and to check different conditions on its output and error streams.

__init__(popen)
Creates an interpreter instance. popen is a Popen-like object which must support non-blocking I/O.

expect(cond=None, timeout=0, retries=0, interval=0.01, quantum=0.01, raise_on_error=True,
log=None)

Express expectations on the outcome of a command.

cond is a two argument callable which will be passed the command’s standard output and standard error,
and which should return True if the expectation is satisfied. For the other arguments see the documentation
for the Timer class.

expect_any(**kwargs)
Expect any output.

expect_lines(count=1, **kwargs)
Expect count lines of output.

expect_regexp(regexp, where=0, **kwargs)
Expect to find a match for the regexp regular expression within the where stream.

expect_string(string, where=0, **kwargs)
Expect a string in the where stream.

run(cmd, log=None, **kwargs)
Executes the command and waits for the expected outcome or an error.

8 Chapter 3. command - Wrap complex commands in Python objects

Nxpy Documentation, Release 1.0.4

send_cmd(cmd, log=None)
Write cmd to the interpreter’s input, optianally logging it. If log is not None, override the global setting.

setLog(log)
If log is True, enable logging of command output and error, otherwise disable it.

class Interpreter(cmd)
The actual Interpreter class.

This implementation uses a core.nonblocking_subprocess.NonblockingPopen instance.

__init__(cmd)
Creates an interpreter instance. popen is a Popen-like object which must support non-blocking I/O.

class LineWaiter(count)
Wait for count lines of output.

__call__(...) <==> x(...)

__init__(count)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class RegexpWaiter(regexp, where)
Wait for a match to a given regexp, passed either compiled or as a string.

__call__(...) <==> x(...)

__init__(regexp, where)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class StringWaiter(string, where)
Wait for a specific string in the where stream.

__call__(...) <==> x(...)

__init__(string, where)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class Timer(timeout=0, retries=0, interval=0.1, quantum=0.01)
A collaborative timer class. Support a polling mechanism by keeping track of the amount of time to wait before
the next attempt, according to different policies.

__init__(timeout=0, retries=0, interval=0.1, quantum=0.01)
Specify an overall timeout, a number of retries and/or an interval between them. The next attempt will not
take place before a quantum has passed. Timings are expressed in seconds. If a timeout is specified it will
take precedence over the other arguments; in that case the number of retries will take precedence over the
interval. If neither a timeout nor a number of retries are specified the overall timer will never expire.

expired()
Indicate whether the current timer expired. Use as polling loop control condition.

getInterval()
Return the next wait interval. Call after each attempt in order to know how long to wait for.

reset()
Reset the timer.

waitError(out, err)
Wait for any error.

waitOutput(out, err)
Wait for any output.

3.3. interpreter - Wrap interactive programs in Python classes 9

Nxpy Documentation, Release 1.0.4

3.4 option - Describe complex command lines

Function argument to command line option conversion. Provides means to describe commands with complicated
syntaxes, which often combine sub-commands, options and arguments. Typical examples include subversion and ftp.

class Config(prefix=’–’, separator=’ ’, bool_opts=(), value_opts=(), iterable_opts=(), format_opts={},
mapped_opts={}, opposite_opts={})

Command option definitions. Provides a single definition point for all the options supported by a command.

__init__(prefix=’–’, separator=’ ’, bool_opts=(), value_opts=(), iterable_opts=(), format_opts={},
mapped_opts={}, opposite_opts={})

Constructor. Its arguments are used to specify all the valid options. Each option is prefixed by prefix.
When an option takes multiple arguments these are separated by a separator. bool_opts must be specified
on the command line when they are True. value_opts take a single argument; iterable_opts take multiple
arguments; format_opts have their syntax specified by means of a format string; mapped_opts require some
form of translation, usually because they are not valid Python identifiers; opposite_opts must be specified
on the command line when they are False.

exception InvalidOptionError
Raised when an option is not supported.

class Parser(config, command, arguments, options, **defaults)
Constructs a complex command line from the provided command and its options and arguments. Uses a
Config instance, config, to provide means to check conditions on the supplied options. Other constraints
on how options should be used may be expressed and verified by means of the check methods.

__init__(config, command, arguments, options, **defaults)
Takes an instance of Config, a command to execute, an iterable of arguments and a mapping of options
and their actual values. The remaining keyword arguments indicate the options supported by command
with their default values.

checkExactlyOneOption(*options)
Checks that one and only one in a set of mutually exclusive options has been specified.

checkExclusiveOptions(*options)
Checks that at most one in a set of mutually exclusive options has been specified.

checkMandatoryOptions(*options)
Checks that all compulsory options have been specified.

checkNotBothOptsAndArgs(*options)
Checks that options incompatible with arguments haven’t been specified if any argument is present.

checkOneBetweenOptsAndArgs(*options)
Checks that either at least one in a set of options or some arguments have been specified, but not both.

getCommandLine()
Returns the command line to be executed.

10 Chapter 3. command - Wrap complex commands in Python objects

CHAPTER 4

file_object - Stubs for read-only and modifiable file-like objects

Helper classes for the implementation of read-only and writable file objects that forward calls to an actual file object
variable.

class ReadOnlyFileObject(file_=None)
Implement the non modifying portion of the file object protocol by delegating to another file object.

Subclass and override as needed.

__init__(file_=None)
Set the delegate file object.

setFile(file_)
Set the delegate file object.

class WritableFileObject(file_=None)
Implement the file object protocol by delegating to another file object.

Subclass and override as needed.

__init__(file_=None)
Set the delegate file object.

11

Nxpy Documentation, Release 1.0.4

12 Chapter 4. file_object - Stubs for read-only and modifiable file-like objects

CHAPTER 5

file - File related utilities

File related utilities.

compare(file1, file2, ignore_eof=True, encoding=None)
Compare two text files for equality. If ignore_eof is True, end of line characters are not considered. If not None
encoding is used to open the files. On Python 2.x encoding is ignored.

open_(*args, **kwargs)
Open a file removing invalid arguments on Python 2.x.

13

Nxpy Documentation, Release 1.0.4

14 Chapter 5. file - File related utilities

CHAPTER 6

maven - Tools to execute the Maven build tool and manipulate its
configuration

Tools to drive the Maven build tool and to manipulate its configuration files.

6.1 artifact - Representation of a Maven artifact

6.2 assembly_descriptor - Representation of a Maven Assembly
plugin’s descriptor

6.3 mvn - Wrapper class for the mvn command line tool

Maven wrapper.

class Mvn(debug=None)

__init__(debug=None)
Takes as arguments the command name and a boolean value indicating whether debug mode should be
activated for all executions of this command.

clean(projects=None, debug=None)

deploy(projects=None, debug=None)

package(projects=None, debug=None)

6.4 pom - Representation of a Maven POM file

15

Nxpy Documentation, Release 1.0.4

16 Chapter 6. maven - Tools to execute the Maven build tool and manipulate its configuration

CHAPTER 7

memo - Memoize objects according to a given key

Memoize class instances according to a given key.

By default the key only assumes the True value, thus implementing a singleton.

class Memo
Base class for classes that require memoization.

Subclasses should override the _key(*args, **kwargs) method to compute a key on the constructor’s arguments.

Care should be taken to avoid calling __init__() again for entities already constructed.

static __new__(cls, *args, **kwargs)
Return the instance corresponding to the given key, creating it if it doesn’t exist.

17

Nxpy Documentation, Release 1.0.4

18 Chapter 7. memo - Memoize objects according to a given key

CHAPTER 8

nonblocking_subprocess - Subprocesses with non-blocking I/O

Allow non-blocking interaction with a subprocess.

This module was taken from this recipe in the ActiveState Code Recipes website, with only minor modifications. This
is the original description:

Title: Module to allow Asynchronous subprocess use on Windows and Posix
→˓platforms
Submitter: Josiah Carlson (other recipes)
Last Updated: 2006/12/01
Version no: 1.9
Category: System

On Windows pywin32 is required.

class NonblockingPopen(cmd, encoding=None, **kwargs)
An asynchronous variant to subprocess.Popen, which doesn’t block on incomplete I/O operations.

Note that the terms input, output and error refer to the controlled program streams, so we receive from output or
error and we send to input.

__init__(cmd, encoding=None, **kwargs)
Execute cmd in a subprocess, using encoding to convert to and from binary data written or read from/to
the subprocess’s input, output and error streams.

Additional keyword arguments are as specified by subprocess.Popen.__init__() method.

get_conn_maxsize(which, maxsize)
Return which output pipe (either stdout or stderr) and maxsize constrained to the [1, 1024] interval in a
tuple.

recv(maxsize=None)
Receive at most maxsize bytes from the subprocess’s standard output.

recv_err(maxsize=None)
Receive at most maxsize bytes from the subprocess’s standard error.

19

http://code.activestate.com/recipes/440554-module-to-allow-asynchronous-subprocess-use-on-win/
http://code.activestate.com/recipes/langs/python/
https://pypi.python.org/pypi/pywin32
https://docs.python.org/3/library/subprocess.html#subprocess.Popen

Nxpy Documentation, Release 1.0.4

send(input_)
Send input_ to the subprocess’s standard input.

send_recv(input_=”, maxsize=None)
Send input_ to the subprocess’s standard input and then receive at most maxsize bytes from both its stan-
dard output and standard error.

recv_some(p, t=0.1, e=1, tr=5, stderr=0)
Try and receive data from NonblockingPopen object p’s stdout in at most tr tries and with a timeout of t. If
stderr is True receive from the subprocess’s stderr instead.

send_all(p, data)
Send all of data to NonblockingPopen object p’s stdin.

20 Chapter 8. nonblocking_subprocess - Subprocesses with non-blocking I/O

CHAPTER 9

past - Python version support enforcement

Identification and enforcement of supported Python releases.

class Version(version)
Identifies a Python release in a way that is convenient for comparison and printing.

at_least()
Return True if the current Python version is equal or higher than self.

at_most()
Return True if the current Python version is equal or lower than self.

enforce_at_least(version)
Assert that the current Python version is equal or higher than version.

enforce_at_most(version)
Assert that the current Python version is equal or lower than version.

21

Nxpy Documentation, Release 1.0.4

22 Chapter 9. past - Python version support enforcement

CHAPTER 10

path - File system related utilities

filesystem related utilities.

class CurrentDirectory(path)
A context manager that allows changing the current directory temporarily.

__init__(path)
Set the current directory to path.

current
Return the current directory.

blasttree(dir_)
Remove a directory more stubbornly than shutil.rmtree().

Required on filesystems that do not allow removal of non-writable files

23

https://docs.python.org/3/library/shutil.html#shutil.rmtree

Nxpy Documentation, Release 1.0.4

24 Chapter 10. path - File system related utilities

CHAPTER 11

ply - Add-ons for the PLY lexer & parser generator

Wrapper classes for the PLY parser generator.

11.1 parser - A class wrapper for PLY parsers

11.2 scanner - A class wrapper for PLY scanners

25

Nxpy Documentation, Release 1.0.4

26 Chapter 11. ply - Add-ons for the PLY lexer & parser generator

CHAPTER 12

sequence - Sequence related utilities

Utility functions that deal with non-string sequences.

make_tuple(arg)
An alternate way of creating tuples from a single argument.

A single string argument is turned into a single element tuple and a dictionary argument is turned into a tuple of
its items. Otherwise it works like the standard tuple constructor.

27

Nxpy Documentation, Release 1.0.4

28 Chapter 12. sequence - Sequence related utilities

CHAPTER 13

sort - Sorting functions

Sort functions.

topological_sort(pairs)
Provide a topological ordering of the supplied pair elements.

pairs is a sequence of two element sequences, in which the first element comes before the second according to
the desired ordering criterium.

29

Nxpy Documentation, Release 1.0.4

30 Chapter 13. sort - Sorting functions

CHAPTER 14

svn - High level API for the Subversion version control tool

A Python API for the Subversion version control tool.

A lazy, ahem, agile person’s answer to the official svn bindings.

14.1 svn - Wrapper for the svn client tool

Subversion client wrapper.

Only supports versions 1.6, 1.7 and 1.8, others might work but have not been tested. Requires at least Python 2.6.

class Info(out)
Represents the output of the svn info command in a structured way.

__init__(out)
x.__init__(. . .) initializes x; see help(type(x)) for signature

__str__() <==> str(x)

class Parser(command, arguments, options, **defaults)
Allows passing nxpy.svn.url.Url instances as arguments to Svn’s methods.

__init__(command, arguments, options, **defaults)
Takes an instance of Config, a command to execute, an iterable of arguments and a mapping of options
and their actual values. The remaining keyword arguments indicate the options supported by command
with their default values.

class Status(line)
Represents the output of one line of the svn status command in a structured way.

__init__(line)
x.__init__(. . .) initializes x; see help(type(x)) for signature

__str__() <==> str(x)

class Svn(debug=False)
The actual wrapper.

31

Nxpy Documentation, Release 1.0.4

__init__(debug=False)
Takes as arguments the command name and a boolean value indicating whether debug mode should be
activated for all executions of this command.

cat(*targets, **options)

checkout(src, dest, debug=False, **options)

commit(src, debug=False, **options)

copy(src, dest, debug=False, **options)

delete(*targets, **options)

diff(*targets, **options)

export(src, dest, **options)

getexternals(d)
Return d’s svn:externals property as a dictionary of directory - URL pairs.

Note that only a limited subset of the externals syntax is supported: either the pre-svn 1.5 one (direc-
tory - URL) or the same with inverted elements. Throw nxpy.svn.url.BadUrlError if an external URL is
malformed.

getignore(d)

import_(src, dest, debug=False, **options)

info(*targets)

list(*targets)

log(src, **options)

mkdir(*targets, **options)

move(src, dest, debug=False, **options)

propget(name, *targets)

propset(name, *targets, **options)

setexternals(externals, d, username=”, password=”, debug=False)

setignore(ignore, d, username=”, password=”, debug=False)

status(*targets, **options)

update(*targets, **options)

version()

14.2 svnadmin - Wrapper for the svnadmin administration tool

Subversion administration tool wrapper.

class SvnAdmin(debug=None)

__init__(debug=None)
Takes as arguments the command name and a boolean value indicating whether debug mode should be
activated for all executions of this command.

create(path, debug=None)

32 Chapter 14. svn - High level API for the Subversion version control tool

Nxpy Documentation, Release 1.0.4

14.3 url - Models a URL adhering to the trunk/tags/branches con-
vention

Subversion URL manipulation.

exception BadUrlError
Indicates a malformed URL.

class Url(path)
A well-formed Subversion repository URL that follows standard svn conventions.

The URL must end in either ‘trunk’, ‘tags/label’ or ‘branches/label’.

__eq__(other)
x.__eq__(y) <==> x==y

__init__(path)
x.__init__(. . .) initializes x; see help(type(x)) for signature

__ne__(other)
x.__ne__(y) <==> x!=y

__str__() <==> str(x)

getbranch(branch)

gettag(tag)

gettrunk()

isbranch(branch=None)

istag(tag=None)

istrunk()

14.4 wcopy - Models a working copy

Working copy manipulation.

exception ModifiedError
Raised when attempting to tag or branch a working copy that contains changes.

exception NotOnBranchError
Raised when attempting to delete a working copy that is not on the requested branch.

exception NotOnTagError
Raised when attempting to delete a working copy that is not on the requested tag.

class Wcopy(dir_, url=None, username=”, password=”)
A working copy obtained by checking out a Url.

__init__(dir_, url=None, username=”, password=”)
Initialize attributes.

If url is not None, perform a checkout, otherwise check that dir_ points to a valid working copy.

__str__() <==> str(x)

branch(label)

commit()

14.3. url - Models a URL adhering to the trunk/tags/branches convention 33

Nxpy Documentation, Release 1.0.4

delete_branch(label)

delete_path(path, keep_local=False)

delete_tag(label)

getexternals()

getignore()

setexternals(ext)

setignore(ign)

tag(label)

update(ignore_externals=False)

34 Chapter 14. svn - High level API for the Subversion version control tool

CHAPTER 15

temp_file - Temporary files that support the context protocol

Temporary files and directories.

Requires at least Python 2.6

class TempDir(*args, **kwargs)
A temporary directory that implements the context manager protocol.

The directory is removed when the context is exited from. Uses tempfile.mkdtemp() to create the actual
directory.

__init__(*args, **kwargs)
Create a temporary directory with the given arguments.

name
Return the directory name.

class TempFile(*args, **kwargs)
A temporary file that implements the context manager protocol.

Wrap a tempfile.NamedTemporaryFile() generated file-like object, to ensure it is not deleted on close,
but rather when the underlying context is closed.

__init__(*args, **kwargs)
Create a temporary file with the given arguments.

name
Return the actual file name.

35

https://docs.python.org/3/library/tempfile.html#tempfile.mkdtemp
https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile

Nxpy Documentation, Release 1.0.4

36 Chapter 15. temp_file - Temporary files that support the context protocol

CHAPTER 16

test - Test support utilities

Testing related utilities.

16.1 env - Access to the testing environment for the svn, maven and
msvs packages

Environment configuration for tests that interact with the system.

class Data(package)

__init__(package)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class Env(package)

__init__(package)
x.__init__(. . .) initializes x; see help(type(x)) for signature

class EnvBase(elem)

__init__(elem)
x.__init__(. . .) initializes x; see help(type(x)) for signature

exception TestEnvNotSetError
Raised when the test environment hasn’t been setup, i.e. NXPY_TEST_DIR is not set.

get_data(test, package)

get_env(test, package)

37

Nxpy Documentation, Release 1.0.4

16.2 log - Log configuration for tests

Logging configuration for tests.

16.3 test - Support functions for running tests

Unittest utility functions.

skipIfNotAtLeast(version)
Skip the current test if the current Python release is lower than version.

skipIfNotAtMost(version)
Skip the current test if the current Python release is higher than version.

testClasses(*classes)
Runs all tests defined in the given classes.

testModules(*modules)
Runs all tests defined in the given modules.

38 Chapter 16. test - Test support utilities

CHAPTER 17

xml - XML related utility classes

XML related utility classes.

17.1 util - Various utilities

39

Nxpy Documentation, Release 1.0.4

40 Chapter 17. xml - XML related utility classes

CHAPTER 18

core - Common library infrastructure

18.1 error - nxpy’s exception hierarchy

41

Nxpy Documentation, Release 1.0.4

42 Chapter 18. core - Common library infrastructure

CHAPTER 19

Running the tests

Nxpy tests are based on the standard unittest module. As recent features are used the unittest2 backport is
required with Python 2.6. Tests reside in _test subdirectories of the library package directory. For each module
module tests should be found in a test_module module.

Tests may be run for all supported Python versions installed on your system and present in your PATH environment
variable with tox and pytest. Dependencies from libraries available from PyPI are automatically installed by tox.
The following additional requirements should also be fulfilled:

• The nxpy-maven library requires that a recent version of Maven be present in your PATH.

• The nxpy-svn library requires that a recent version of Subversion be present in your PATH.

43

Nxpy Documentation, Release 1.0.4

44 Chapter 19. Running the tests

CHAPTER 20

Generating the documentation

Nxpy’s documentation is written in reStructuredText and rendered with Sphinx.

45

Nxpy Documentation, Release 1.0.4

46 Chapter 20. Generating the documentation

CHAPTER 21

Creating new releases

Libraries should only be released when needed. Although a combined package is not released, its configuration should
be updated to reflect library changes.

Assuming all changes to code and documentation have been pushed to the upstream repository, the basic steps for the
creation of a new library release are:

• Run tox in the root directory of your development checkout. Ideally you should be developing against the most
recent supported Python release on one of the supported platforms. As long as Python 2.7 is supported tests
should be run against it too.

• Update any release related configuration file, e.g.:

– CHANGES.txt

– README.rst

– setup.py

• Commit to master any remaining change and push upstream. This should trigger Travis tests against all the
supported Python versions.

• Bump the library version number according to semantic versioning: increment the minor version element if the
new release includes API breaking changes, the increment version element otherwise. Add rc1 to the release
number to mark the fact that this is a release candidate.

• Run python setup.py sdist bdist_wheel in the library’s root directory. Check the contents of the
resulting packages in the dist directory.

• Run twine check dist/*. Fix any resulting problem.

• Run twine upload --repository-url https://test.pypi.org/legacy/ dist/* to up-
load the library to Test PyPI. You will need a Test PyPI account for that.

• Create a new virtualenv and install the new library in it with pip install --index-url https://
test.pypi.org/simple/ --no-deps --pre <<Library>>.

• Perform a minimal test.

• Remove the build, dist and <<Library>>.egg-info directories.

47

https://test.pypi.org/

Nxpy Documentation, Release 1.0.4

• Remove the rc1 prefix from the version number in the setup.py file.

• Commit and push all outstanding changes.

• Run python setup.py sdist bdist_wheel again and check the contents of the resulting packages.

• Run twine check dist/*.

• Run twine upload dist/* to upload the library to PyPI. You will need a PyPI account.

• Create another virtualenv and install the new library in it with pip install <<Library>>.

• Perform a last test.

Supported Python versions
2.7
3.5
3.6
3.7
3.8

Supported platforms
Linux
MacOS
Windows 7 or later

The libraries are being developed with Python 3.8 so as to be compatible with Python 2.7. Tests are run and most
modules work also with 3.5, 3.6 and 3.7. Some should still work with versions as early as 3.2 and 2.5. There is no
immediate plan to remove Python 2.x support, but in general earlier releases will only be supported as long as external
tools, such as Travis or pip, keep supporting them.

Originally the libraries resided on SourceForge and were distributed as a single package. Starting from release 1.0.0
each library is being packaged separately even though they are all hosted within the same project on GitHub.

The Nxpy logo was drawn by Claudia Romano.

48 Chapter 21. Creating new releases

https://pypi.org/
http://nxpy.sourceforge.net/
https://github.com/nmusatti/nxpy

CHAPTER 22

Indices and tables

• genindex

• modindex

• search

49

Nxpy Documentation, Release 1.0.4

50 Chapter 22. Indices and tables

Python Module Index

n
nxpy.command, 7
nxpy.command.command, 7
nxpy.command.error, 8
nxpy.command.interpreter, 8
nxpy.command.option, 10
nxpy.core, 41
nxpy.core.abstract.abstract, 3
nxpy.core.backup_file.backup_file, 5
nxpy.core.error, 41
nxpy.core.file.file, 13
nxpy.core.file_object.file_object, 11
nxpy.core.memo.memo, 17
nxpy.core.nonblocking_subprocess.nonblocking_subprocess,

19
nxpy.core.past.past, 21
nxpy.core.path.path, 23
nxpy.core.sequence.sequence, 27
nxpy.core.sort.sort, 29
nxpy.core.temp_file.temp_file, 35
nxpy.maven, 15
nxpy.maven.mvn, 15
nxpy.ply, 25
nxpy.svn, 31
nxpy.svn.svn, 31
nxpy.svn.svnadmin, 32
nxpy.svn.url, 33
nxpy.svn.wcopy, 33
nxpy.test, 37
nxpy.test.env, 37
nxpy.test.log, 38
nxpy.test.test, 38
nxpy.xml, 39

51

Nxpy Documentation, Release 1.0.4

52 Python Module Index

Index

Symbols
__call__() (LineWaiter method), 9
__call__() (RegexpWaiter method), 9
__call__() (StringWaiter method), 9
__enter__() (BackupDir method), 5
__enter__() (BackupFile method), 5
__eq__() (Url method), 33
__exit__() (BackupDir method), 5
__exit__() (BackupFile method), 5
__init__() (BackupDir method), 5
__init__() (BackupFile method), 6
__init__() (BadCommand method), 8
__init__() (BaseInterpreter method), 8
__init__() (Command method), 7
__init__() (Config method), 10
__init__() (CurrentDirectory method), 23
__init__() (Data method), 37
__init__() (Env method), 37
__init__() (EnvBase method), 37
__init__() (Error method), 7
__init__() (Info method), 31
__init__() (Interpreter method), 9
__init__() (LineWaiter method), 9
__init__() (Mvn method), 15
__init__() (NonblockingPopen method), 19
__init__() (Parser method), 10, 31
__init__() (ReadOnlyFileObject method), 11
__init__() (RegexpWaiter method), 9
__init__() (Status method), 31
__init__() (StringWaiter method), 9
__init__() (Svn method), 31
__init__() (SvnAdmin method), 32
__init__() (TempDir method), 35
__init__() (TempFile method), 35
__init__() (Timer method), 9
__init__() (Url method), 33
__init__() (Wcopy method), 33
__init__() (WritableFileObject method), 11
__ne__() (Url method), 33

__new__() (Memo static method), 17
__str__() (Info method), 31
__str__() (Status method), 31
__str__() (Url method), 33
__str__() (Wcopy method), 33

A
abstractstatic (class in

nxpy.core.abstract.abstract), 3
at_least() (Version method), 21
at_most() (Version method), 21

B
BackupDir (class in

nxpy.core.backup_file.backup_file), 5
BackupFile (class in

nxpy.core.backup_file.backup_file), 5
BadCommand, 8
BadLogFormat, 8
BadUrlError, 33
BaseInterpreter (class in

nxpy.command.interpreter), 8
blasttree() (in module nxpy.core.path.path), 23
branch() (Wcopy method), 33

C
cat() (Svn method), 32
checkExactlyOneOption() (Parser method), 10
checkExclusiveOptions() (Parser method), 10
checkMandatoryOptions() (Parser method), 10
checkNotBothOptsAndArgs() (Parser method),

10
checkOneBetweenOptsAndArgs() (Parser

method), 10
checkout() (Svn method), 32
clean() (Mvn method), 15
close() (BackupFile method), 6
Command (class in nxpy.command.command), 7
commit() (BackupDir method), 5

53

Nxpy Documentation, Release 1.0.4

commit() (BackupFile method), 6
commit() (Svn method), 32
commit() (Wcopy method), 33
compare() (in module nxpy.core.file.file), 13
Config (class in nxpy.command.option), 10
copy() (Svn method), 32
create() (SvnAdmin method), 32
current (CurrentDirectory attribute), 23
CurrentDirectory (class in nxpy.core.path.path), 23

D
Data (class in nxpy.test.env), 37
delete() (Svn method), 32
delete_branch() (Wcopy method), 33
delete_path() (Wcopy method), 34
delete_tag() (Wcopy method), 34
deploy() (Mvn method), 15
diff() (Svn method), 32

E
enforce_at_least() (in module

nxpy.core.past.past), 21
enforce_at_most() (in module

nxpy.core.past.past), 21
Env (class in nxpy.test.env), 37
EnvBase (class in nxpy.test.env), 37
Error, 7, 8
expect() (BaseInterpreter method), 8
expect_any() (BaseInterpreter method), 8
expect_lines() (BaseInterpreter method), 8
expect_regexp() (BaseInterpreter method), 8
expect_string() (BaseInterpreter method), 8
ExpectError, 8
expired() (Timer method), 9
export() (Svn method), 32

G
get_conn_maxsize() (NonblockingPopen method),

19
get_data() (in module nxpy.test.env), 37
get_env() (in module nxpy.test.env), 37
getbranch() (Url method), 33
getCommandLine() (Parser method), 10
getexternals() (Svn method), 32
getexternals() (Wcopy method), 34
getignore() (Svn method), 32
getignore() (Wcopy method), 34
getInterval() (Timer method), 9
gettag() (Url method), 33
gettrunk() (Url method), 33

I
import_() (Svn method), 32

Info (class in nxpy.svn.svn), 31
info() (Svn method), 32
Interpreter (class in nxpy.command.interpreter), 9
InvalidOptionError, 10
isbranch() (Url method), 33
istag() (Url method), 33
istrunk() (Url method), 33

L
LineWaiter (class in nxpy.command.interpreter), 9
list() (Svn method), 32
log() (Svn method), 32

M
make_tuple() (in module

nxpy.core.sequence.sequence), 27
Memo (class in nxpy.core.memo.memo), 17
MissingBackupError, 6
mkdir() (Svn method), 32
ModifiedError, 33
move() (Svn method), 32
Mvn (class in nxpy.maven.mvn), 15

N
name (BackupFile attribute), 6
name (TempDir attribute), 35
name (TempFile attribute), 35
NonblockingPopen (class in

nxpy.core.nonblocking_subprocess.nonblocking_subprocess),
19

NotOnBranchError, 33
NotOnTagError, 33
NotSavedError, 6
nxpy.command (module), 7
nxpy.command.command (module), 7
nxpy.command.error (module), 8
nxpy.command.interpreter (module), 8
nxpy.command.option (module), 10
nxpy.core (module), 41
nxpy.core.abstract.abstract (module), 3
nxpy.core.backup_file.backup_file (mod-

ule), 5
nxpy.core.error (module), 41
nxpy.core.file.file (module), 13
nxpy.core.file_object.file_object (mod-

ule), 11
nxpy.core.memo.memo (module), 17
nxpy.core.nonblocking_subprocess.nonblocking_subprocess

(module), 19
nxpy.core.past.past (module), 21
nxpy.core.path.path (module), 23
nxpy.core.sequence.sequence (module), 27
nxpy.core.sort.sort (module), 29
nxpy.core.temp_file.temp_file (module), 35

54 Index

Nxpy Documentation, Release 1.0.4

nxpy.maven (module), 15
nxpy.maven.mvn (module), 15
nxpy.ply (module), 25
nxpy.svn (module), 31
nxpy.svn.svn (module), 31
nxpy.svn.svnadmin (module), 32
nxpy.svn.url (module), 33
nxpy.svn.wcopy (module), 33
nxpy.test (module), 37
nxpy.test.env (module), 37
nxpy.test.log (module), 38
nxpy.test.test (module), 38
nxpy.xml (module), 39

O
open() (BackupFile method), 6
open_() (in module nxpy.core.file.file), 13

P
package() (Mvn method), 15
Parser (class in nxpy.command.option), 10
Parser (class in nxpy.svn.svn), 31
propget() (Svn method), 32
propset() (Svn method), 32

R
ReadOnlyFileObject (class in

nxpy.core.file_object.file_object), 11
recv() (NonblockingPopen method), 19
recv_err() (NonblockingPopen method), 19
recv_some() (in module

nxpy.core.nonblocking_subprocess.nonblocking_subprocess),
20

RegexpWaiter (class in nxpy.command.interpreter), 9
RemovalError, 6
reset() (Timer method), 9
rollback() (BackupDir method), 5
rollback() (BackupFile method), 6
run() (BaseInterpreter method), 8
run() (Command method), 7

S
save() (BackupDir method), 5
save() (BackupFile method), 6
SaveError, 6
send() (NonblockingPopen method), 19
send_all() (in module

nxpy.core.nonblocking_subprocess.nonblocking_subprocess),
20

send_cmd() (BaseInterpreter method), 8
send_recv() (NonblockingPopen method), 20
setexternals() (Svn method), 32
setexternals() (Wcopy method), 34

setFile() (ReadOnlyFileObject method), 11
setignore() (Svn method), 32
setignore() (Wcopy method), 34
setLog() (BaseInterpreter method), 9
skipIfNotAtLeast() (in module nxpy.test.test), 38
skipIfNotAtMost() (in module nxpy.test.test), 38
Status (class in nxpy.svn.svn), 31
status() (Svn method), 32
StringWaiter (class in nxpy.command.interpreter), 9
Svn (class in nxpy.svn.svn), 31
SvnAdmin (class in nxpy.svn.svnadmin), 32

T
tag() (Wcopy method), 34
TempDir (class in nxpy.core.temp_file.temp_file), 35
TempFile (class in nxpy.core.temp_file.temp_file), 35
testClasses() (in module nxpy.test.test), 38
TestEnvNotSetError, 37
testModules() (in module nxpy.test.test), 38
TimeoutError, 8
Timer (class in nxpy.command.interpreter), 9
TimerError, 8
topological_sort() (in module

nxpy.core.sort.sort), 29

U
update() (Svn method), 32
update() (Wcopy method), 34
Url (class in nxpy.svn.url), 33

V
Version (class in nxpy.core.past.past), 21
version() (Svn method), 32

W
waitError() (in module nxpy.command.interpreter),

9
waitOutput() (in module nxpy.command.interpreter),

9
Wcopy (class in nxpy.svn.wcopy), 33
WritableFileObject (class in

nxpy.core.file_object.file_object), 11

Index 55

	abstract - Additions to the abc standard module
	backup_file - File objects with automated backup
	command - Wrap complex commands in Python objects
	file_object - Stubs for read-only and modifiable file-like objects
	file - File related utilities
	maven - Tools to execute the Maven build tool and manipulate its configuration
	memo - Memoize objects according to a given key
	nonblocking_subprocess - Subprocesses with non-blocking I/O
	past - Python version support enforcement
	path - File system related utilities
	ply - Add-ons for the PLY lexer & parser generator
	sequence - Sequence related utilities
	sort - Sorting functions
	svn - High level API for the Subversion version control tool
	temp_file - Temporary files that support the context protocol
	test - Test support utilities
	xml - XML related utility classes
	core - Common library infrastructure
	Running the tests
	Generating the documentation
	Creating new releases
	Indices and tables
	Python Module Index
	Index

